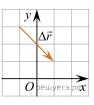
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

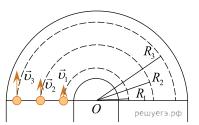
1. Прибор, предназначенный для измерения массы тела, — это:

1) барометр


2) весы

3) термометр

4) линейка


5) амперметр

2. Материальная точка совершила перемещение $\Delta \vec{r}$ в плоскости рисунка (см. рис.). Для проекций этого перемещения на оси Ох и Оу справедливы соотношения, указанные под номером:

1)
$$\Delta r_x > 0$$
, $\Delta r_y < 0$ 2) $\Delta r_x > 0$, $\Delta r_y > 0$ 3) $\Delta r_x = 0$, $\Delta r_y > 0$ 4) $\Delta r_x < 0$, $\Delta r_y = 0$ 5) $\Delta r_x < 0$, $\Delta r_y < 0$

3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $v_1 = 10$ м/с, $v_2 = 15$ м/с, $v_3 = 20$ м/с, а радиусы кривизны траекторий $R_1 = 5.0$ м, $R_2 = 7.5$ м, $R_3 = 9.0$ м. Промежутки времени $\Delta t_1, \ \Delta t_2, \ \Delta t_3, \$ за которые мотогонщики проедут поворот, связаны соотношением:

1)
$$\Delta t_1 = \Delta t_2 = \Delta t_3$$
 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$

4. На материальную точку массой m=0.50 кг действуют две силы, модули которых $F_1=4.0~{\rm H}$ и $F_2 = 3.0$ H, направленные под углом $\alpha = 90^{\circ}$ друг к другу. Модуль ускорения a этой точки равен:

1) 2.0 m/c^2 2) 5.0 m/c^2 3) 8.5 m/c^2 4) 10 m/c^2 5) 14 m/c^2

5. Цепь массы m = 0.80 кг и длины l = 2.0 м лежит на гладком горизонтальном столе. Минимальная работа A_{min} , которую необходимо совершить для того, чтобы поднять цепь за ее середину на высоту, при которой она не будет касаться стола, равна:

1) 4,0 Дж

2) 8,0 Дж

3) 12 Дж

5) 20 Дж

6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой V = 3.0 м/c.Если частота колебаний частиц шнура $v = 2.0~\Gamma$ ц, то разность фаз $\Delta \phi$ колебаний частиц, для которых положения равновесия находятся на расстоянии l = 75 см, равна:

1) $\pi/2$ рад

π рад

3) $3\pi/2$ рад

4) 2π рад

 $5) 4\pi$ рад

7. Идеальный газ массой m=6.0 кг находится в баллоне вместимостью V=5.0 м³. Если средняя квадратичная скорость молекул газа $\langle \upsilon_{\mbox{\tiny KB}} \rangle = 700$ м/с, то его давление p на стенки баллона равно:

1) 0.2 MΠa

2) 0,4 MΠa

3) 0,6 MПа

4) 0.8 MΠa

5) 1.0 MΠa

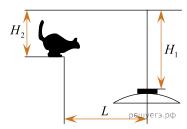
8. При изобарном нагревании идеального газа, количество вещества которого постоянно, объем газа увеличился в k=1,50 раза. Если начальная температура газа была $T_1=300~{\rm K}$, то изменение температуры Δt в этом процессе составило:

9. В закрытом баллоне находится v=2,00 моль идеального одноатомного газа. Если газу сообщили количество теплоты Q=18,0 кДж и его давление увеличилось в k=3,00 раза, то начальная температура T_1 газа была равна:

10. На рисунке приведено условное обозначение:

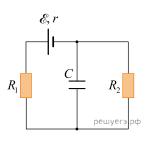
1) реостата 2) вольтметра 3) гальванического элемента 4) конденсатора 5) электрического звонка

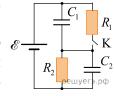
11. Диаметр велосипедного колеса d=66 см, число зубьев ведущей звездочки $N_1=44$, ведомой — $N_2=14$ (см. рис.). Если велосипедист равномерно крутит педали с частотой v=82 об/мин, то модуль скорости V велосипеда равен ... **км/ч**.



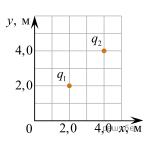
12. Два груза массы $m_1=0.4$ кг и $m_2=0.2$ кг, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1=At$ и $F_2=2At$, где A

= 1,5 H/c. Если модуль сил упругости нити в момент разрыва $F_{\rm ynp}$ = 20 H, то нить разорвется в момент времени t от начала движения, равный ... ${\bf c}$.


- **13.** На гидроэлектростанции вода падает с высоты h=54 м. Если коэффициент полезного действия электростанции $\eta=72$ %, а её полезная мощность $P_{\rm полезн}=84$ МВт, то масса m воды, падающей ежесекундно равна ... т.
- **14.** Находящийся на шкафу кот массой $m_1 = 3,0$ кг запрыгивает на светильник, расположенный на расстоянии L = 100 см от шкафа H_2 (см. рис.). Начальная скорость кота направлена горизонтально. Светильник массой $m_2 = 2,0$ кг подвешен на невесомом нерастяжимом шнуре на расстоянии H_1 =140 см от потолка. Расстояние от потолка до шкафа $H_2 = 95$ см. Если пренебречь размерами кота и светильника, то максимальное отклонение светильника с котом от положения равновесия в горизонтальном направлении будет равно ... см.


Примечание. Колебания светильника с котом нельзя считать гармоническими.

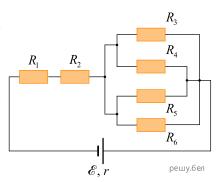
- **15.** В баллоне находится смесь газов: углекислый газ ($M_1=44$ $\frac{\Gamma}{\text{МОЛЬ}}$) и кислород ($M_2=32$ $\frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление углекислого газа в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.
- **16.** Гружёные сани массой M=264 кг равномерно движутся по горизонтальной поверхности, покрытой снегом, температура которого t=0.0 °C. Коэффициент трения между полозьями саней и поверхностью снега $\mu=0.035$. Если всё количество теплоты, выделившееся при трении полозьев о снег, идёт на плавление снега ($\lambda=330$ кДж/кг), то на пути s=400 м под полозьями саней растает снег, масса m которого равна ... г.


- 17. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1 = 1,60$ кДж. При последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении. Если начальная температура газа $T_1 = 326$ K, то его конечная температура T_2 равна ... **К**.
- **18.** В хранилище поступили отходы, содержащие радиоактивный цезий $^{137}_{55}\mathrm{Cs}$, период полураспада которого $T_{1/2}=30$ лет. Если через промежуток времени $\Delta t=90$ лет в отходах останется m=8,0 г радиоактивного цезия, то масса m_0 поступившего в хранилище цезия равна ... г.
- **19.** Электрическая цепь состоит из источника постоянного тока с ЭДС ϵ = 60 В и с внутренним сопротивлением r = 3,0 Ом, двух резисторов и конденсатора ёмкостью C = 0,50 мкФ (см. рис.). Если сопротивления резисторов R_1 = R_2 = 6,0 Ом, то заряд q конденсатора равен ... **мкК**л.

- **20.** Троллейбус массой m=11 т движется по горизонтальному участку дороги прямолинейно и равномерно со скоростью, модуль которой $\upsilon=36~\frac{{\rm KM}}{{\rm Y}}$. Отношение модулей силы сопротивления движению и силы тяжести, действующих на троллейбус, $\frac{F}{mg}=0.011$. Если напряжение на двигателе троллейбуса $U=550~{\rm B}$, а коэффициент полезного действия двигателя $\eta=81~\%$, то сила тока I в двигателе равна ... A.
- **21.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Полная энергия контура W=64 мкДж. В момент времени, когда сила тока в катушке I=10 мА, заряд конденсатора q=2.1 мкКл. Если индуктивность катушки L=20 мГн, то емкость C конденсатора равна ... нФ.
- **22.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=100$ мкФ, $C_2=300$ мкФ, ЭДС источника тока $\mathscr{E}=60,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то \mathscr{E} -есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{\mathrm{B}}{\mathrm{M}}$.

- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}{
 m Au}$. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~{
 m cyt.}$, то за промежуток времени $\Delta t=8,1~{
 m cyt.}$ распадётся ... тысяч ядер $^{198}_{79}{
 m Au}$.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.

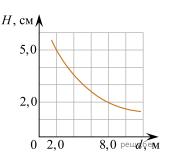

26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

